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Abstract
Thermal expansion is an everyday phenomenon. One would naturally be curious to see how fast
the expansion proceeds. While the theory of thermal expansion in statistical thermal
equilibrium is well known, the time-dependent process during thermal expansion is a more
complex statistical dynamical problem. Contrary to intuitive expectations, it will be seen that
the dynamical expansion process is generally different from the process of merely establishing
temperature equilibration (thermal-kinetic equilibrium) because two vastly disparate timescales
are at work. It will be shown that the finite speed of thermal expansion hinges upon a recently
derived result that an acoustic phonon of wavevector �q �= 0 does carry a finite physical
momentum; it arises from anharmonicity, provided translational symmetry is broken. While the
eventual mathematical formulation seems pedestrian, it is arrived at after several layers of
physical thinking. Our final result shows that the time required for thermal expansion of a thin
bar of length L by �L due to a given temperature increase �T is given by �tL ∝ (L/�L)

(L/cs), where cs is the speed of sound. Its physical origin as well as its classical and quantum
limits are fully discussed.

1. Introduction

As shown in the paper ‘Physical momentum versus crystal
momentum of acoustic phonons in a crystal lattice’ [1],
in addition to the more familiar ‘crystal momentum’ an
acoustic phonon in a crystal lattice also possesses a physical
momentum. As we shall see, the present paper provides an
important application of the concept of the physical momentum
of an acoustic phonon in a crystal lattice.

Thermal expansion is an everyday phenomenon. How a
bar becomes lengthened when it is heated is not only a matter
of scientific curiosity but should be of great practical interest as
well. Our problem at hand is, therefore, the speed of thermal
expansion in progress rather than thermal expansion as an
accomplished act. Although thermal expansion is a familiar
topic in standard solid-state texts [2], there seems to be hardly
any work on how fast the expansion proceeds. This is because
the former is a problem of statistical thermal equilibrium but
the latter belongs to the more complex realm of statistical
non-equilibrium thermal dynamics. On the other hand, it will
be seen that familiar concepts in the former such as the heat
capacity, the Grüneisen constant γ , the thermal conductivity,
the speed of sound cs and so on will make their way into the

investigation of the latter as well. In fact, it will be shown that
the time �tL required for the thermal expansion of a long thin
bar of length L by �L due to a given temperature rise �T is
given by �tL ∼ (L/�L)(L/cs).

By carefully re-interpreting the statistical mechanics of the
thermal expansion coefficient [2] and by calculating explicitly
the time of heat diffusion transversely into a thin crystal bar,
two distinct timescales in the thermal expansion process will
be identified in section 2. Based on these two timescales a
first attempt at formulating an equation to calculate the thermal
expansion as a function of time is made in section 3. However,
a serious flaw is found in that the equation for it fails to
predict a steady state for the thermal expansion. Instead, an
oscillatory expansion is found. It is at this crucial stage that
the concept of physical momentum of an acoustic phonon [1]
enters. It provides a steadying mechanism. A brief review
of the physical momentum of acoustic phonons is given in
section 4. An approach with a finite average speed to a final
steady value of thermal expansion is subsequently obtained
in section 5. Physical discussions of this result as well as its
quantum and classical limits are given in section 6. A summary
and conclusion is given in the final section 7.
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2. Two distinct timescales

Generally the problem of approach to equilibrium of a system
possessing many kinds of interacting degrees of freedom may
involve several widely disparate timescales. Our problem at
hand is the time rate of thermal expansion. Naively one might
assume that as soon as a specimen has been uniformly heated
to a higher temperature by �T , the thermal expansion to a
larger volume by �V would be simultaneously accomplished.
That this is false can be seen as follows. Imagine a long,
moderately narrow and very thin slab of thickness b and length
L initially placed in contact with a heat reservoir such as a
huge pot of water at temperature T . When we scoop it up and
immediately submerge it into another huge pot of water at a
higher temperature T + �T , the time �tT for the thin slab to
warm up uniformly to that higher temperature can be obtained
by solving the heat diffusion equation

∂T

∂ t
= κ

∂2T

∂x2
(1)

for the distribution of the temperature T (x, t) as a function of
time t and position x across the transverse dimension or the
thickness of the slab. Here κ = K

C , where K is the thermal
conductivity and C the heat capacity [3]. The exact solution is

T (x, t) = (T + �T )

[
1 − 4

π

∑
l=1,3,5,...

1

l
sin

lπx

b
e−κ π2l2

b2 t

]
.

(2)
The l = 1 term in the sum dominates the long time

behavior. Accordingly the slab approaches a thermally steady
state in which the entire slab attains the uniform temperature
(T + �T ) independent of x when t � �tT , where

�tT ≈ 1

κπ2
b2. (3)

In other words, �tT is the timescale for temperature equi-
libration or ‘thermal-kinetic equilibrium’. Microscopically,
such a temperature equilibration is achieved by the diffusion of
kinetic energy via interparticle collisions, recalling especially
the kinetic definition of temperature that pertains to the trans-
lational degrees of freedom [4]. That this �tT of equation (3)
turns out to be independent of �T is not surprising. Both the
rate of heat conduction �Q

�t = K A�T/b and the amount of
energy �Q = C Ab�T to be transported from the surround-
ing heat reservoir to the slab are proportional to �T , thereby
corroborating �t ∼ Cb2

K = b2

κ
. (For a quartz slab at T = 0 ◦C,

C = 0.48 cal cm−3 ◦C−1, K = 0.03 cal cm−1 ◦C−1 s−1,
κ = 16 s cm−2; for aluminum, κ = 1.18 s cm−2.) However,
no statement can be made by the diffusion equation (1) about
the mechanical increase in length.

On the other hand, it will be shown later that the time
for thermal expansion of a long thin slab is proportional to L,
being given by �tL ≈ (L/cs)/(9α�T ) of equation (19) where
cs is the sound speed and α the thermal expansion coefficient.
We could imagine the length L to be very large compared to
the thickness b so that �tL/�tT ≈ ( L2

b2 )( K
C )(1/cs�L) � 1,

where �L = Lα�T is the expected thermal expansion. Thus

the timescale for temperature equilibration or ‘thermal-kinetic
equilibrium’ would generally be quite different from that for
thermal expansion or ‘thermal-mechanical equilibrium’. Only
when both equilibria have been attained can we say that true
or total thermal equilibrium is reached. Let us now address the
problem of finding �tL .

3. A first attempt at finding �tL

A numerical approach might treat a linear chain of atoms
connected by anharmonic springs. Based on the premise
of �tT /�tL 	 1 we assume that for t � �tT each
atom has already received the same boost in kinetic energy
proportional to �T from a heat reservoir but the directions
of the corresponding increase in velocity are randomized [4].
We can then solve this ensemble of coupled nonlinear Newton
equations for the atoms and follow the motion of each
numerically. We hope to find, upon averaging over the random
directions, the eventual expansion of the chain expressed by
the averaged positions of the last atoms at the free ends
as time passes. Our effort turned out to be a failure, for
although we could trace these atomic motions numerically for
a short enough chain with one end fixed, the expected orderly
fractional increase �L/L in chain length L was only of order
10−5 K−1, much smaller than the fractional atomic vibrations
�a/a ∼ 10−2, a being the lattice spacing. Trying to identify
spatially this tiny �L/L by ensemble averaging over a sea of
much larger but almost completely random atomic excursions
is like finding a needle in a haystack. This difficulty is further
compounded by the disparate temporal scales: �a oscillates
at a rate approximating to the Debye frequency ωD while �L
proceeds at the much slower pace of the thermal expansion of
a macroscopic object.

A Boltzmann differential–integral equation approach [5]
involving the usual semi-classical distribution function
f (x, p, t) of the atoms would not be any easier either, for it
not only has to cope with the anharmonic interactions between
the atoms but would also be plagued by the same disparities in
the scales of space and time.

To look for a clue elsewhere we first review the statistical
mechanics of the thermal expansion coefficient [2]. Let us start
with the expression for the ambient pressure P of the system
at temperature T :

P = −
[

∂

∂V

(
U eq

stat.latt. +
1

2

∑
�q

h̄ω�q

)]
T

+ Pph (4)

where

Pph = −
(

∂Uphonon

∂V

)
S

= −
∑

�q

(
∂ h̄ω�q
∂V

)
S

〈
n�q(T )

〉
(5)

is the contribution to the pressure by the phonons, 〈n�q(T )〉
being the thermal averaged number of �q-phonons. On the other
hand, the first term in equation (4) is the contribution from the
energy of the strained lattice in static equilibrium, including
that of the zero-point fluctuations. Neglecting the small
ambient (e.g. atmospheric) pressure P we see that equation (4)
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expresses the mechanical balance of the (positive) outward
pressure of Pph by the force of the stretched atomic springs
that tend to restore the atoms to their original configuration.
Although this equation is supposed to describe only the time
independent state of total thermal equilibrium at temperature
T after the full thermal expansion has been attained, we may
now turn the aforementioned troublesome disparity in the two
timescales into an advantage by re-interpreting equation (4)
as follows. Based on the kinetic definition of temperature
which relates it to the random kinetic energy of the atoms
(i.e. of the phonons) [4] the increase of Pph by �Pph should
be attained concurrently with the increase of temperature by
�T . Once these increases have been accomplished within the
short timescale �tT of equation (3), the thermal expansion
of the long thin bar, still submerged in the huge pot of
hotter water (or thermal reservoir) at T + �T , would proceed
at the much slower timescale �tL isothermally. At every
subsequent stage of the expansion process the lattice may be
viewed as consisting of a quasi-static, strained lattice plus
the very fast lattice vibrations (phonons) about this quiescent
lattice, corresponding to the first and the second term of
equation (4), respectively. At each such quasi-static stage, the
thermodynamic variables T , P and V can thus be assumed to
have well-defined values. However, unlike the total thermal
equilibrium in which the two terms balance each other, the
outward phonon force of the second term would now be too
large to be balanced by the restoring force of the strained
atomic springs until the thermal expansion has finally been
completed. This is of course why the system keeps expanding
until thermo-mechanical equilibrium is reached.

In this re-interpretation the problem has become that of
a quiescent elastic lattice of cross section A, being pulled
outward by �Pph at every quasi-static stage of the slow
isothermal expansion process. All the random anharmonic
lattice vibrations about this quiescent lattice have now been
thermally averaged to appear only in this �Pph ∝ γ , based
on equation (5) in the usual approximation of ∂ω�q/∂V =
−γω�q/V , γ being the Grüneisen coefficient [2]. Other
anharmonic effects such as phonon–phonon interaction are
neglected by treating the phonons as a gas of free bosons under
this Grüneisen approximation, rendering the harmonic lattice
vibration modes still independent of each other [2].

Without loss of generality consider a long, thin crystalline
bar of cross section A with one end fixed, for a bar with
both ends free is equivalent to a bar with the center of mass
fixed during thermal expansion. Suppose that under the above-
mentioned pull of �Pph every spring between two neighboring
atoms separated by lattice spacing a is stretched by the same
averaged amount 〈x(t)〉. Thus the nth layer of atoms along
this bar, counting from the fixed end, would be displaced
by n〈x(t)〉, and the layer at the free end of this bar of N
layers by �L(t) = N〈x(t)〉. With �Pph being uniform
within the bar, there is no net phonon force acting on any
internal layer of atoms except at the free end. Conservation of
energy then leads to A�Pph N〈x(t)〉 = (N A/a2)( k

2 〈x(t)〉2) +
1
2 (m A/a2)

∑N
n=1(nv)2. Differentiating with respect to t then

yields the equation of motion for a whole layer of atoms,

d2〈x(t)〉
dt2

+ ω2
e 〈x(t)〉 = a2 �Pph

meff
(6)

where

ω2
e = k

meff
≡ 3k

m N2
(7)

k being the atomic spring constant and m the atomic mass.
Note that classical physics suffices because the quantum
mechanical averaged motion of a whole layer of atoms is
macroscopic. This accounts for the simplicity of this approach.

The frequency ωe is the natural frequency of oscillation
for each layer of atoms when the long thin bar is stretched
momentarily by any force and then let go. This frequency is
purely mechanical in nature due completely to the stiffness
of the atomic springs. It is completely unrelated to, and
hence would not interfere with, any thermal or statistical
processes. Whether its magnitude is large or small compared to
1/�tT of equation (3) would neither affect nor be affected by,
for example, the temperature equilibration process across the
transverse dimension of the thin bar described by equation (2).
In other words, by themselves the longitudinal oscillations
of the long thin bar set up by an external perturbation of
whatever cause would not generate any entropy of their
own. Furthermore, any slow, quasi-static thermal expansion
lengthwise which presumably would generate entropy is
simply superimposed on the mechanical oscillation. This is
why the timescale of ω−1

e is not of significance and was not
included in the discussion in section 2.

The solution to equation (6) is �L(t) = (Na2�Pph/k)(1−
cos ωet). This means, however, that the thermal expansion
would not settle down due to some damping process to a steady
value �L = a2�Pph/(k/N) but would rather oscillate with
an effective frequency ωe about such a value. This is thermo-
dynamically unacceptable. Clearly some key physical mecha-
nism that could provide a damper to the oscillatory behavior is
missing. But there is no entropy associated with a quasi-static
lattice nor with a mechanically vibrating one. And we have ne-
glected phonon–phonon scattering. Where else can we find a
source of dissipation that leads to the damper?

4. Physical momentum of an acoustic phonon

To this end we re-examine more critically the concept of
the phonon pressure of equation (5), evaluated now in the
Grüneisen approximation:

Pph = γ
∑

�q h̄ω�q
〈
n �q(T )

〉
V

= γ Uphonon(T )

V
(8)

where Uphonon(T )/V is the energy density of the phonon gas
at temperature T . As in the case of the more familiar photon
pressure we may adopt a purely kinetic-theory point of view
to think of the phonon pressure as due to the bombardments
by the bullet-like phonons. This implies inevitably that an
acoustic phonon of frequency ωq = csq and wavevector
�q should carry a physical momentum proportional to �q .
Otherwise, how else can it give rise to any force or pressure?
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Indeed it has been most recently shown that an acoustic
phonon could actually carry a physical momentum, provided
translational invariance is broken, as for our crystalline bar
of finite length that is in contact with an external heat
reservoir [1]. The broken translational symmetry enables
an acoustic phonon of �q �= 0 to couple (via anharmonic
interaction) to another acoustic phonon mate of �q = 0, thereby
forming a composite phonon of the same �q . As is well known,
the q = 0 acoustic mode corresponds to a uniform translation
of the lattice. Thus it is this mate of q = 0 that endows
a physical momentum to the composite phonon. In fact, it
was proved that in processes involving broken translational
invariance an acoustic �q-phonon in n-dimensions behaves like
a corpuscular particle with a physical momentum [1]

�p�q = nh̄γ �q. (9)

This momentum would vanish in the absence of anharmonic
coupling when γ = 0. It should be distinguished from
the more familiar ‘crystal momentum’ �pcrystal

�q = h̄ �q in any
dimension (see, for example [2, 6, 7]), which is operative in
processes respecting translational crystalline symmetry such as
electron–phonon scattering within the crystalline medium [1].

5. The time for thermal expansion �tL

We now proceed along the kinetic-theoretic line of thinking to
re-calculate the pressure of the bullet-like phonons impinging
on the free end of a thin and long crystal bar (of cross-sectional
area A) that is fixed at the other end. But this time we take
into account the velocity cs − vend of the phonons relative
to the free end that is expanding outward with velocity vend.
Thus the phonon frequency ω�q is Doppler shifted to ω′

�q =
ω�q(cs − vend)/cs. Correspondingly the momentum of each �q-
phonon impinging on the expanding free end is changed from
�p�q of equation (9) to the relative momentum �p′

�q along the
longitudinal direction:

�p′
�q = 1h̄γω′

�q
cs

=
(

1h̄γω�q
cs

) (
cs − vend

cs

)

= �p�q
(

1 − vend

cs

)
. (10)

The accompanying phonon pressure is changed from Pph of
equation (8) to

P ′
ph =

∑
�q

〈
n �q/2V

〉
(cs − vend)2p′

�q = Pph(T ) + δPph(vend)

(11)

which represents the change of momentum per unit time due
to the bombardments of the phonons of density 〈n �q/2V 〉 on a
unit normal area of the outward expanding (with speed vend)
free end. The phonon pressure when vend = 0 is given by

Pph(T ) =
∑

�q

〈
n �q/2V

〉
cs2p�q =

∑
�q

〈
n �q(T )/V

〉
γ h̄ω�q (12)

and

δPph(vend) ≈ −2vend

cs
Pph(T ) (13)

is the correction to the phonon pressure due to the Doppler
shift. While this correction varies directly with the prevailing
temperature-dependent phonon pressure Pph(T ) itself, most
significantly it is proportional linearly but directed oppositely
to the expanding velocity vend. Hence it provides a damping
force that is the missing link we have been looking for. It owes
its existence entirely to the bombardment by the nonvanishing
phonon momentum of equation (9). In turn, the existence
of the phonon momentum itself is rendered possible because
the requirement of broken translational symmetry is met by
the externally imposed �T from the heat reservoir. Thus the
obstacle to acquiring a finite momentum by a �q �= 0 phonon
via the Grüneisen coupling to its acoustic mate of q = 0
is removed [1]. (In contrast, water pressure on a receding
vertical wall due to gravitation would not have such a δP of
Doppler origin as in equation (13), for that pressure arises
not from discrete corpuscular bombardments but rather from
the gravitational forces transmitted sideway through a nearly
incompressible continuum.)

Energy is dissipated in every collision of the phonon with
the outward expanding free end because, in the laboratory
frame, the reflected momentum is smaller in magnitude than
the incident momentum. The greater the phonon pressure that
is proportional to the product of the temperature-dependent
phonon density and the difference between the forward and
the reflected phonon momenta of each phonon upon collision
with the expanding free end, the greater will be the energy
dissipation.

As the temperature rises by �T the Doppler-shift
correction would itself change due to �T according to
equation (13) by

�[δPph(vend)] ≈ −2vend

cs
�Pph(T ). (14)

With this correction taken into account our previous equation
of motion (6) is now modified, with vend = N d〈x(t)〉/dt , to
become

d2〈x(t)〉
dt2

+ ω2
e 〈x(t)〉 + η

d 〈x(t)〉
dt

= a2 �Pph

meff
(15)

where

η = 6a2

Nmcs
�Pph(T ) (16)

is the damping coefficient that we are looking for. Here
a2�Pph(T ) is the increase of phonon force due to �T , pushing
outward at the free end of every linear chain of atoms whose
total mass is Nm within the thin bar.

Following equation (12) we find

�Pph(T ) = −
∑

�q
(∂ h̄ω�q/∂V )s�

〈
n �q(T )

〉

= γ
∑

�q
(h̄ω�q/V )�T

∂

∂T

〈
n �q(T )

〉
= [γ (∂U/∂T )V /V ]�T = γ cv�T (17)

where cv = (∂U/∂T )V /V is the heat capacity. This �Pph(T )

is directly proportional to the change of the phonon density
and hence to the rise in temperature �T as it should be from
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the kinetic definition of temperature [4]. As a result we obtain
from equation (16)

η = 6γ cv�T/(Lcsρ) (18)

in which ρ = m/a3 is the mass density. Note that η is
independent of ωe , which is consistent with the discussion near
the end of section 3. Comparing with the thermal expansion
coefficient [2] α = γ cv/3B = γ cv/(3ρc2

s ) we finally obtain

�tL ≡ 2

η
= 1

9

(
L

cs

) (
L

�L

)
= 1

9

(
L

cs

)
1

α�T
. (19)

Counter to naive expectation �tL is inversely proportional to
�T . Mathematically this is due to the fact that the Doppler-
shift correction to �Pph(T ) (caused by temperature rise �T )
as given by equation (14) is proportional to �Pph(T ) and
hence to �T itself. Physically this is consistent with our
previous discussion of the relation between energy dissipation
and the phonon pressure that is essentially the product of
the temperature-dependent phonon density and the difference
between the forward and the reflected momenta of the phonons
as each of them bombards the outward-expanding free end of
the bar. The expanding motion is now

�L(t) ≈ �L

[
1 − e− η

2 t

(
cos ωet + η

2ωe
sin ωet

)]
(20)

where we have neglected higher order terms in η/ωe 	 1.
Here �L = αL�T is the final value of thermal expansion.
It is seen that the length of the long thin bar oscillates with a
frequency ωe as it slowly expands on its way to the final value
at the rate of 1/�tL given by equation (19). The back and forth
oscillations are due, of course, to the inertia of the motion as
the bar is pulled outward by the force that is proportional to the
right side of equation (15).

6. Physical discussion

The fact that η of equation (18), like α, is proportional to cv(T )

means that it is independent of T in the classical limit when
T � TDebye, and proportional to T 3 in the quantum limit when
T 	 TDebye. That the sound speed cs sets the basic timescale of
L/cs in �tL of equation (19) is expected physically. The fact
that the long bar should only expand outward thermally from
the free end rather than from the fixed end as the temperature
rises clearly requires the transmission of information by a
messenger (the phonon) traveling at sound speed at least once
from one end to the other before the atoms in the bar can tell
the difference between the two ends. The other factor L/�L
in �tL simply expresses the fact that it takes, on average, not
merely one round but rather a multiple of L/�L rounds of
traversal over the length L before the thermal expansion can
settle down to a steady value. For a given �T , a smaller
�L/L means a smaller expansion coefficient α or cv and hence
a smaller force �Pph(T ) according to equation (17). This
naturally leads to a correspondingly slower speed or longer
time �tL for the expansion.

7. Summary and conclusion

Although the eventual mathematical approach in this work
seems pedestrian and elementary, it is arrived at only after
several layers of physical thinking. Thus we have exploited
the disparity in the two timescales, �tL � �tT , to arrive at a
dynamic relation connecting the successive quasi-static stages
of the slow process of thermal expansion of a long thin bar in
which the prevailing instantaneous phonon pressure Pph more
than balances the restoring elastic force until the expansion
is finally completed. To find a mechanism that would have
a steadying influence on the otherwise oscillatory expansion
process, we make use of a recently derived result [1, 8]
for the physical momentum �p�q = nh̄γ �q for a �q-phonon.
As the free end of the crystalline bar expands with a finite
velocity vend, the momentum of the pressure-causing phonons
bombarding that free end would suffer a Doppler shift, thereby
resulting in a reduction δPph that is opposite and proportional
to �vend. This provides the dissipative, steadying mechanism in
equation (15). This equation plays a role in the approach to
thermal-mechanical equilibrium similar to that played by the
heat diffusion equation (1) in the approach to thermal-kinetic
equilibrium that yields �tT of equation (2). It is this steadying
mechanism that gives rise to the thermal expansion time �tL

of equation (19), the central result of this investigation. Its
physical origin as well as its classical and quantum limits
have been discussed. The rate of thermal expansion of a
thin metallic bar will be published elsewhere. Other systems
involving different kinds of degrees of freedom that interact
in disparate timescales abound [9], as in systems involving
translational motion and spin [10]. Conceivably similar ideas
and techniques might perhaps be adapted to the calculation of
their rates of approach to thermal equilibrium.

Some possibly related works concerning ‘extended
irreversible thermodynamics’ [11–13] have recently been
brought to our attention. For example the conceptual problems
arising in the definition and measurement of temperature in
situations where the local equilibrium hypothesis is no longer
satisfactory were discussed in [13]. Dissipative fluxes such
as heat flux q and viscous pressure tensor Pv (the latter is
defined as a part of the pressure P = pU + Pv in which p
is the equilibrium thermodynamic pressure, with U the identity
tensor) are proposed as independent variables in this theory.
Whereas the evolution equations for the classical variables u, v

and �v are related to conservation laws, no general criteria exist
concerning the evolution equations of the dissipative fluxes.
Restrictions on the form of the latter evolutions will be imposed
by the second law of macroscopic thermodynamics [11, 12].
However, it is clear that the relation of these works to ours
is rather remote, for we are not dealing with the evolution
of any of the above-mentioned dissipative fluxes in any
thermodynamic way. Instead, our work is microscopic,
statistical and dynamical in nature. Thermodynamics comes in
most significantly through the kinetic definition of temperature
and hence its relation to pressure [4] which we argued was
established in the very beginning of the expansion process
during the short temporal scale of �tT of equation (3). It is
not dependent on any hypothesis of spatial local equilibrium.

5
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Our timescale �tL for thermal expansion is calculated from the
dynamical equation (equation (15)) according to the response
to the outward expanding force of thermal pressure that
results from the Doppler-shifted momenta of the microscopic,
individual, corpuscular acoustic phonons, rather than from any
macroscopic constitutive equations.

Some other works concerning radiation pressure resulting
from wave propagations [14] and radiation forces associated
with heat propagation [15] could have interesting connection
to our work. We shall, however, postpone this investigation
until later.
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